题目连接:
Description
这天,SJY显得无聊。在家自己玩。在一个棋盘上,有N个黑色棋子。他每次要么放到棋盘上一个黑色棋子,要么放上一个白色棋子,如果是白色棋子,他会找出距离这个白色棋子最近的黑色棋子。此处的距离是 曼哈顿距离 即(|x1-x2|+|y1-y2|) 。现在给出N<=500000个初始棋子。和M<=500000个操作。对于每个白色棋子,输出距离这个白色棋子最近的黑色棋子的距离。同一个格子可能有多个棋子。
Input
第一行两个数 N M
以后M行,每行3个数 t x y 如果t=1 那么放下一个黑色棋子 如果t=2 那么放下一个白色棋子Output
对于每个T=2 输出一个最小距离
Sample Input
2 3
1 1
2 3
2 1 2
1 3 3
2 4 2
Sample Output
1
2
Hint
题意
题解:
kdtree裸题
代码
#includeusing namespace std;const int maxn = 1000005;#define INF 1000000000struct arr{ int d[2],min[2],max[2],l,r;};int D,root,x,y,ans,n,m,tot,op;;inline int cmp(arr a,arr b){ return a.d[D] >1; nth_element(a+l+1,a+mid+1,a+r+1,cmp); a[mid].min[0]=a[mid].max[0]=a[mid].d[0]; a[mid].min[1]=a[mid].max[1]=a[mid].d[1]; if (l!=mid) a[mid].l=build(l,mid-1,dd^1); if (mid!=r) a[mid].r=build(mid+1,r,dd^1); if (a[mid].l) up(mid,a[mid].l); if (a[mid].r) up(mid,a[mid].r); return mid;}void insert(int k){ int p=root;D=0; while (1) { up(p,k); if (a[k].d[D]<=a[p].d[D]){if (!a[p].l) {a[p].l=k;return;} p=a[p].l;} else {if (!a[p].r) {a[p].r=k;return;} p=a[p].r;} D^=1; }}int getdis(int k){ int res=0; if (x a[k].max[0]) res+=x-a[k].max[0]; if (y a[k].max[1]) res+=y-a[k].max[1]; return res;}void ask(int k){ int d0=abs(a[k].d[0]-x)+abs(a[k].d[1]-y); if (d0